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INTRODUCTION

Ranking algorithms or link analysis algorithms 
determine the success of the Web search engines 
as they calculate the importance and relevance 
of individual page on the World Wide Web. 
Examples of link analysis algorithms are HITS 
(Hyperlink Induced Topic Search), PageRank 
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ABSTRACT

Link analysis algorithms for Web search engines determine the importance and relevance of Web pages. 
Among the link analysis algorithms, PageRank is the state of the art ranking mechanism that is used in 
Google search engine today. The PageRank algorithm is modeled as the behavior of a randomized Web 
surfer; this model can be seen as Markov chain to predict the behavior of a system that travels from 
one state to another state considering only the current condition. However, this model has the dangling 
node or hanging node problem because these nodes cannot be presented in a Markov chain model. This 
paper focuses on the application of Markov chain on PageRank algorithm and discussed a few methods 
to handle the dangling node problem. The Experiment is done running on WEBSPAM-UK2007 to show 
the rank results of the dangling nodes.
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and SALSA (Stochastic Approach for Link 
Structure Analysis). These algorithms rely 
on the link structure of the Web pages. HITS 
(Kleinberg, 1999) developed by Jon Kleinberg, 
is a query depend algorithm, which calculate 
the authorities and hubs value of a page while 
SALSA (Lempel & Moran, 1999) algorithm 
combines the random walk feature in PageRank 
and the hub authority idea from HITS algorithm.

This paper, we focus on PageRank 
algorithm. PageRank (Brin & Page, 1998) is 
a query and content independent algorithm 
(Borodin et al., 2005). Query independent 
means that the PageRank algorithm ranks all 
the pages offline after the crawler download 
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and index the pages and the rank remains constant for all the pages. Content independent 
means the PageRank algorithm does not include the contents of a Web page for ranking rather 
it uses the link structure of the Web to calculate the rank. This PageRank algorithm is explained 
in section of Pagerank Algorithm. When a user types a query term on the search engine, the 
PageRank algorithm just finds the pages on the Web that matches the query term and presents 
those pages to the user in the order of their PageRank. It looks simple but the mathematical 
model behind is amazing. This paper explores the mathematical model behind the PageRank 
algorithm with experiments and results.

This paper is organized as follows. Next Section describes Markov chain and it’s 
Mathematics. Section of Pagerank Algorithm explains PageRank algorithm using a sample 
Web graph. Section of Use of Markov Chain in Pagerank Algorithm describes how Markov 
chain is applied in the PageRank algorithm. Experiments and results are shown in Section of 
Experimental Results and Section of Conclusion concludes this paper.

MARKOV CHAIN

Introduction

Markov chain (Norris, 1996; Gao et al., 2009) is invented by A. A. Markov; a Russian 
Mathematician in the early 1900’s to predict the behavior of a system that moves from one 
state to another state by considering only the current state. Markov chain uses only a matrix and 
a vector to model and predict it. Markov chains are used in places where there is a transition 
of states. It used in biology, economy, engineering, physics etc. But the recent application of 
Markov chain on the Google search engine is interesting and more challenging.

Markov Chain is a random process used by a system that at any given time t = 1, 2, 3 … 
n occupies one of a finite number of states (Gao et al., 2009). At each time t the system moves 
from state v to u with probability puv that does not depends on t. puv is called as transition 
probability which is an important feature of Markov chain and it decides the next state of the 
object by considering only the current state and not any previous states.

Transition Matrix

Transition Matrix T is an n x n matrix formed from the transition probability of the Markov process, 
where n represents the number of states. Each entry in the transition matrix tuv is equal to the 
probability of moving from state v to state u in one time slot. So, 0 ≤ tuv ≤ 1 must be true for all u,v 
= 1, 2, …, n. The following example shows a sample transition matrix of a 3 state Markov chain:

1/ 4 1/ 2 1/ 4
1/ 2 0 1/ 2
1/ 2 1/ 4 1/ 4

uvt
 
 =  
  
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The Transition matrix must have the following properties:

•• The matrix must be square and nonnegative matrix i.e. the number of rows and columns 
must be equal and the entries must be non negative. Each row and column represents a state. 

•• All the entries in the matrix represent probabilities, so, each entry must be between 0 and 
1 inclusive. 

•• The sum of the entries in a row is the sum of the transition probabilities from a state to 
another state. So, the sum of the entries in any row must equal to one. This is called as 
stochastic matrix. 

In the above Transition matrix, tuv, we can easily see the probability of moving from one 
state to another state. For example t3,2 = ¼ i.e. the probability of moving from state 2 to state 
3 is only 25%. This Markov chains are used to predict the probability of an event.

PAGERANK ALGORITHM

Web Graph

PageRank algorithm treats the Web as a directed labeled graph whose nodes are the pages and 
the edges are the hyperlinks between them (Broder et al., 2000). This directed graph structure 
in the Web is called as Web Graph. A graph G consists of two sets V and E. The set V is a finite, 
nonempty set of vertices. The set E is a set of pairs of vertices; these pairs are called edges. 
The notation V(G) and E(G) represent the sets of vertices and edges, respectively of graph G. 
It can also be expressed G = (V, E) to represent a graph. The graph in Fig.1 is a directed graph 
with 3 vertices and 3 edges.

The vertices V of G, V(G) = {1, 2, 3}. The Edges E of G, E(G) = {(1, 2), (2, 1), (2, 3), 
(1,3), (3,1)}. In a directed graph with n vertices, the maximum number of edges is n(n-1). With 
3 vertices, the maximum number of edges can be 3(3-1) = 6.

 

 1 

 2  3 

Fig.1: A Directed Web Graph G
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There are a number of link based ranking algorithms (Brin & Page, 1998; Kleinberg, 
1999; Lempel & Moran, 2000). Among them PageRank is the most popular link based ranking 
algorithm. PageRank algorithm and Google are developed by Brin and Page (1998) during 
their Ph D at Stanford University as a research project. The PageRank algorithm is the heart of 
the Google search engine. Google was introduced in the search engine business in 1998. Soon 
after its introduction, it became one of the most efficient search engine because it is a query 
independent and content independent search engine. It produces the results faster because it is 
query independent i.e. the Web pages are downloaded, indexed and ranked offline. When a user 
types a query on the search engine, the PageRank algorithm just finds the pages on the Web 
that matches the query term and presents those pages to the user in the order of their PageRank. 
PageRank algorithm uses only the link structure of the Web to determine the importance of a 
page rather than going into the contents of a page. PageRank provides a more efficient way to 
compute the importance of a Web page by counting the number of pages that are linking to it 
(in-coming links or backlinks). If an in-coming link comes from a reputed page, then that in-
coming link is given a higher weighting than those in-coming links from a non-reputed pages. 
The PageRank PR of a page p can be computed by taking into account the set of pages pa(p) 
pointing to p as per the formula given by Page et al. (1999) is shown in equation [1] as follows:

( ) (1 )
p

q

q q

PR p d d
pa

PR
O∈

= + −∑
			         [1]

Here, d is a damping factor such that 0 <d <1 and Oq is the number of out-going links of 
page q.

Let us take an example of a simple Web graph with 3 nodes 1, 2 and 3 as shown in Fig. 
1. The PageRank for pages 1, 2 and 3 can be calculated by using equation [1]. To start with, 
we assume the initial PageRank as 1.0 and do the calculation. The damping factor d is set to 
0.85. PageRank calculation of page 1 is shown in equation [2] and [3].

( )
2 3

(2) (3)(1) 1 PR PRPR d d
O O

   
= − +  +             		        [2]

1 1(1) 0.15 0.85 1.425
2 1

PR  = + + = 
  			         [3]

( )
1

(1)(2) 1 PRPR d d
O

 
= − +   

  			     	       [4]

1.425(2) 0.15 0.85 0.756
2

PR  = + = 
  		    	       [5]
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( )
1 3

(1) (3)(3) 1 PR PRPR d d
O O

   
= − +  +            		        [6]

1.425 0.756(3) 0.15 0.85 1.077
2 2

PR     = + + =    
     	       [7]

This PageRank computation continues until PageRank gets converged. This computation 
will be shown in the experiments and results section. Previous experiment (Page et al., 1999; 
Ridings & Shishigin, 2002) shows that the PageRank gets converged to a reasonable tolerance.

USE OF MARKOV CHAIN IN PAGERANK ALGORITHM

In the original PageRank algorithm by Brin et al., the Markov chain is not being mentioned. 
But the other researchers Langville and Meyer (2004b) and Bianchini et al. (2005) explored 
the relationship between PageRank algorithm and the Markov chain. This section explains the 
relationship between PageRank algorithm and Markov chain. Imagine a random surfer surfing 
the Web, going from one page to another page by randomly choosing an outgoing link from one 
page to go to the next one. This can some time lead to dead ends i.e. pages with no outgoing 
links, cycles around a group of interconnected pages. So, a certain fraction of the time, the 
surfer chooses a random page from the Web. This theoretical random walk is known as Markov 
chain or Markov process. The limiting probability that an infinitely dedicated random surfer 
visits any particular page is its PageRank.

The number of links to and from a page provides information about the importance of 
a page. The more back links or in-coming a page has, the more important the page is. Back 
links from more good pages carries more weight than back links from less important pages. 
Also if a good page points to several other pages then its weight is distributed equally to all 
those pages. According to Langville and Meyer (2004a), the basic PageRank starts with the 
following [8] to define the rank of a page p as PR(p).

( )
p

q

q

PR p
pa q

PR
O∈

= ∑
	     			         [8]

Where p is a Web page and PR(p) is the PageRank of page p. pa is the set of pages pointing 
to p. Oq is the number of forward links of page q. The above [8] is a recursive equation.
PageRank assigns an initial value of  (0) 1

p nPR = , where n is the total number of pages on the Web. 
The PageRank algorithm iterates as follows in [9].

( 1)  for 0,1, 2,...,

p

k
p

q

k
q

k
q

pa

PR
PR

O
+

∈

= =∑

	     		        [9]
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Where k
qPR  is the PageRank of page p at iteration k. The above equation [9] can be written 

in matrix notation. Let qk be the PageRank vector at kth iteration, and let T be the transition 
matrix for the Web; then according to Langville and Meyer (2004a),

1k kq Tq+ = 	    		      	                   [10]

If there are n pages on the Web, T is an n x n matrix such that tpq is the probability of moving 
from page q to page p in a time interval. Unfortunately, equation [10] has convergence problems 
i.e. it can cycle or the limit may be dependent on the starting vector. To fix this problem, Brin 
and Page build an irreducible* aperiodic+ Markov chain characterized by a primitive transition 
probability matrix.

The irreducibility guarantees the existence of a unique stationary distribution vector q, 
which becomes the PageRank vector. The power method with a primitive stochastic repetition 
matrix will always converge to q independent of the starting vector.

PageRank algorithm makes the hyperlink structure of the Web into a primitive stochastic 
matrix as follows. If there are n pages on the Web, let T be a  n x n matrix whose element tpq is 
the probability of moving from page p to page q in one step. The basic model takes tpq = 1/|Oq|. 
If page q has a set of forward links, Oq, and normally all forward links are chosen equally as 
per the following equation [11].

1

if there is a link from  to , otherwise

0
qpq q pOt




= 

       [11]

The following Fig.2 shows a sample Web graph extracted from a University site. It shows 
a sample Web graph extracted from a University site contains 7 pages namely, Home, Admin, 
Staff, Student, Library, Dept and Alumni. We use this sample Web graph in our Markov analysis 
and PageRank calculation.

 

Alumni 

Library Home Admin 

Dept 

Staff                            Student  

Fig.2: A sample Web Graph W of a University 

------------------

*A Markov chain is irreducible 
if there is a non-zero probability 
of transitioning from any state to 
any other state. 
+ An irreducible Markov chain 
with a primitive transition matrix 
is called as aperiodic chain. 
------------------
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Transition Matrix

The transition matrix T can be produced by applying in equation [11] to our sample Web 
graph on fig.2.

0 1/ 3 0 1/ 3 1/ 3 0 0
0 0 1/ 3 1/ 3 1/ 3 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0

1/ 6 1/ 6 1/ 6 1/ 6 0 1/ 6 1/ 6
0 0 1/ 3 0 1/ 3 0 1/ 3
0 0 0 1/ 3 1/ 3 1/ 3 0

T

 
 
 
 
 =  
 
 
 
  

In the transition matrix T, that row q has non-zero elements in positions that correspond 
to forward links to page q and column p has non-zero elements in positions that correspond to 
back links to page p. If page q has forward links, the sum of row is equal to 1.

In the transition matrix, if sum of any rows is zero that indicates that there is a page with 
no forward links. This type of page is called as dangling node or hanging node. Dangling 
nodes cannot present in the Web graph if it to be presented using a Markov model. There are 
a couple of methods to eliminate this dangling page problem. They are discussed using the 
transition matrix below:

Langville and Meyer (2004b) proposed a method to handle dangling pages is to replace 
all the rows with e/n, where e is a row vector of all ones and n is the order of matrix. In our 
example, the value of n is 7. 

 Using the above proposal, the sample Web graph in Fig.2 is modified as shown in Fig.3.

 

Alumni 

Library Home Admin 

Dept 

Staff                             Student 

Fig.3: Modified Web Graph W using Langville and Meyer (2004b)
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The new forward links from the Alumni page is shown using the dotted arrows. This makes 
the transition matrix T as stochastic as shown below:

0 1/ 3 0 1/ 3 1/ 3 0 0
0 0 1/ 3 1/ 3 1/ 3 0 0

1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7
0 0 0 0 1 0 0

1/ 6 1/ 6 1/ 6 1/ 6 0 1/ 6 1/ 6
0 0 1/ 3 0 1/ 3 0 1/ 3
0 0 0 1/ 3 1/ 3 1/ 3 0

T

 
 
 
 
 =  
 
 
 
  

The row 3 in the transition matrix T , (Alumni page) is connected to all the nodes and also 
connected back to it (shown in the dotted lines).

There is another proposal from Bianchini et al. (2005) and Singh et al. (2010) to connect 
a hypothetical node hi with self loop and connect all the dangling nodes to the hypothetical 
node as shown in Fig.4. This method also makes the transition matrix as stochastic matrix.

In Fig.4, hi is the hypothetical node with self loop (shown in blue dotted line) and the 
Alumni page is connected to it (shown in red dotted line) and the transition matrix for the 
modified graph is shown as follows:

0 1/ 3 0 1/ 3 1/ 3 0 0 0
0 0 1/ 3 1/ 3 1/ 3 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0

1/ 6 1/ 6 1/ 6 1/ 6 0 1/ 6 1/ 6 0
0 0 1/ 3 0 1/ 3 0 1/ 3 0
0 0 0 1/ 3 1/ 3 1/ 3 0 0
0 0 0 0 0 0 0 1

T

 
 
 
 
 
 =  
 
 
 
 
  

The last row and last column in the above transition matrix T is the hypothetical node hi. 

The transition probability for the Alumni page in the modified graph in Fig.4 is 1. Now the 
Alumni page is no more a dangling page. Similarly for the hypothetical node hi the transition 
probability is 1 because of the self loop. Now this Web graph on Fig.4 is also stochastic.

This stochastic property is not enough to guarantee that Markov model will converge and a 
steady state vector exists. There is another problem with is transition matrix T is that this matrix 
may not be regular. The general Web’s nature makes the transition matrix T is not regular. In 
the graph, every node needs to be connected to every other node (irreducible). But in the real 
Web, every page is not connected to every other page i.e. it is not strongly connected. Brin 
et al. [1] forced all the entries in the transition matrix to satisfy 0 < tpq < 1 to make it regular. 
This ensures convergence of qn to a unique, positive steady state vector.
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Google Matrix

According to Langville and Meyer (2005), Brin and Page added a perturbation matrix E = 
eet/n to make this stochastic irreducible matrix as Google matrix as shown in equation [12].

(1 )T T Eα α= + − 				        [12]

Where α is between 0 and 1. Google believed that this new matrix T tends to better model 
the real-life surfer. In the real-life a surfer has 1-α probability of jumping to a random page 
on the Web i.e. by typing a URL on the command line of a browser and an α probability of 
clicking on a forward link on a current page. Many researchers (Brin & Page, 1998; Langville 
& Meyer, 2004b; Bianchini et al., 2005) say the value of α used by the PageRank algorithm 
of Google is 0.85.

We calculate the Google Matrix in equation [12] using the sample Web graph W  by having 
a value of 0.85 for α and shown in the matrix T .

This matrix computation can be normalized to a stationary vector by calculating the powers 
of the transition matrix. At one stage of the calculation, the values of the matrix get stationary.

Those values are the PageRank scores for the 7 pages from the sample Web graph W. 
Assume after the 30th iteration the following are the stationary vector for our sample 7 page 
Web graph.

[ ]0.043 0.334 0.047 0.341 0.441 0.041 0.041s =

 

Alumni 

Library Home Admin 

Dept 

hi 

Staff                             Student  

Fig.4: Modified Web Graph W using Singh et at. (2010) 
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0 1/ 3 0 1/ 3 1/ 3 0 0 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7
0 0 1/ 3 1/ 3 1/ 3 0 0 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7

1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7
0.85 0.150 0 0 0 1 0 0 1/ 7 1/

1/ 6 1/ 6 1/ 6 1/ 6 0 1/ 6 1/ 6
0 0 1/ 3 0 1/ 3 0 1/ 3
0 0 0 1/ 3 1/ 3 1/ 3 0

T

 
 
 
 
 = + 
 
 
 
  

7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7
1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7
1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7
1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7 1/ 7

 
 
 
 
 
 
 
 
 
  

0.021 0.304 0.021 0.304 0.304 0.021 0.021
0.021 0.021 0.304 0.304 0.304 0.021 0.021
0.142 0.142 0.142 0.142 0.142 0.142 0.142
0.021 0.021 0.021 0.021 0.871 0.021 0.021
0.163 0.163 0.163 0.163 0.021 0.163 0.163
0.021 0.021 0.304 0.021 0.30

=

4 0.021 0.304
0.021 0.021 0.021 0.304 0.304 0.304 0.021

 
 
 
 
 
 
 
 
 
  

PageRank Interpretation of Stationary Vector

PageRank interprets the stationary vector in the following way. For example, a user enters a 
query in the Google search window requesting for word 1 and word 2. Then the search engine 
looks for the inverted index database with the word 1 and word 2. This database contains 
the list of all the words or terms and the list of documents that contains the words or terms 
(Langville & Meyer, 2005).

Assume the following documents lists are stored in the inverted index database for word 
1 and word 2 as shown in Table 1.

So, the relevancy set for the user’s query term word 1 and word 2 is {1, 2, 4, and 7}. The 
PageRank of these 4 documents are compared to find out the order of importance. According 
to our sample 7 page Web, 1 is the Staff page, 2 is the Student page, 4 is the Library page and 
7 is the Dept. page. The respective PageRank scores are s1 = 0.043, s2 = 0.334, s4 = 0.341 and 
s7 = 0.041. This PageRank algorithm treats that document 4 (Library) page is most relevant to 
the given query term, followed by document 2 (Student), document 1 (Staff) and document 
7 (Dept). When a user types a new query term, the inverted index database is accessed again 
and a new relevancy set is created. This is how the PageRank algorithm works in the Google 
search engine.

TABLE 1 
Inverted Index Document List
Query Word/Term Document List
Word 1 Document 2, Document 4 & Document 7
Word 2 Document 1 & Document 7
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EXPERIMENTAL RESULTS

The dataset that is used in this experiment is WEBSPAM-UK2007, provided by Laboratory of 
Web Algorithmics, Università degli Studi di Milano with the support of the DELIS EU - FET 
research project (Yahoo! Research, n.d.). The collections contain 114549 hosts and among 
them, 49379 are dangling hosts. The distributions of hosts is as Fig.5.

The dataset is implemented with the algorithm in (Singh et al., 2010) and shows the results 
of the dangling hosts. We actually show the rank results of the first dangling host to the last 
one. The rank results of the dangling hosts is described as in Fig.6.

With the hypothetical node, now the Web graph is stochastic. Fig.6 shows the rank results 
of the dangling hosts in ascending order. The results are calculated with the damping factor α 
of 0.85 and 50 iterations.

 
 

 Label No. of Hosts 
Dangling Hosts 49379 
Non-dangling Hosts 65150 
Total 114529 

Fig.5: Distributions of Web Hosts 

 

Fig.6: The rank results of the dangling hosts 
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CONCLUSION

This paper starts with the introduction of Markov chain and PageRank algorithm. Then the 
mathematics behind the PageRank algorithm is explained theoretically. This paper also brings 
anonymity about how the PageRank algorithm uses the Markov chain and transition matrix 
to calculate the relevancy set. This paper highlights the different adjustments done to make 
the Web graph into a Markov model. In that, the dangling node problem and the methods to 
handle the dangling nodes were also discussed and the mathematical solutions are given. A 
Markov model is created for a sample Web graph and the PageRank calculation is shown for 
the Markov model. We implemented the PageRank algorithm just to support our mathematical 
model and shown the results. 
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